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Some forms of the general solution of the equations of axisymmetrical steady-state slow
motions of viscous fluids are considered. The general solution is constructed in a form
which at the same time consitutes the system of basic formulas of the integration method
based on the properties of p-analytic functions f1l.

1. Let us consider the Stokes equations and the equation of continuity in cylindrical co-
ordinates and in the case of axisymmetrical steady-state motions,
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Eq. (1.3) indicates that there exists a stream function ¥ (7, 1) such that
1 o 1 9y (L4
Ur= T gz Ye=—"F7 Tar :
Substituting these Expressions into (1.1) and (1.2), we find that ¥ satisfies Eq.
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2. In order to integrate Eq. (1.5) we make use of p-analytic functions. Let us recall their
definitions and some of their properties which we shall have occasion to use below (e.g.
see[1], Chapter 1, Sections 2 and 3). The fanction f{{) = pu(x, y) + iv(x, y) of the complex
variable { = x + iy is called p-analytic with the characteristic p = p (x, y) in the domain D
if it is single~valued in this domain and if its real and imaginary parts have continuous par-
tial derivatives and satisfy the system of Eqs.
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If p = p(B), where B is a harmonic function of x and y and if = a + i 8 is an analytic
fanction of { = % + iy, then by the operator derivative of the function f({) with respect to
the conjugate variable Z we mean the Expression (2.2)
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and by the operator derivative of the function f({) with respect to the anticonjugate varia-
ble Z = X - iY the Expression
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If f({) is a p-analytic function, then
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The single-valued fanction of a complex variable f({) is called operator-integrable over
the conjugate variable Z in the domain D if there exists a function of a complex vnrhble'
*({) which is continuous in the domain D and such that d, ¥*({)/dZ exists and Eq. d,
(f*({)/dZ = f({) i valid in the domain D. _

The indefinite operator integral over the conjugate variable Z of the function f({) is
written as [f({) d, “Z,

In order for the operator integral over the conjugate variable Z of the arbitrary {-mdydc
function f({) to be a p-analytic function it is necessary and sufficient that p = p (), where
B is a harmonic fonction of x and y. Now let us attempt to find the general solution of the
fourth-order Eqs.
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If f=u + iv, then Eqs. (2.5) and (2.6) can be written as
dp™f(§) —0
az3dz:

From this, making use of the indefinite operator integral over the conjugate variable Z,
we obtain the general solutions of these Eqs. in the form -
u=2¢[®; )+ D, Q)]+ x )+ x(©@ (2.7)
v =20 [® () — O, ()] + % &) —1 @ _ (2.8)
where @ ;({) and ¥ ({) are arbitrary p-analytic functions and @, ({) and ¥ ({) are the com-
plex conjugates of the functions ® ,({) and y ({), respectively.

8. Setting {mx +iy=r+is, p=rl, w=a+iB=~z+ir, we reduce Eq. (2.5) to (1.5);
hence, the general solution of Eq. (1.5) is of the form
¥ =20 Q)+ OO +2@+3© _ (3.1
where ®, ({) and x({) are arbitrary r-1-analytic functions and @ ,({) and x ({) are the
corresponding conjugate functions. However, in order to simplify ti:e formulas to follow, we
use the following expression for ¥: - _
¥=z[@Q+ P +%x@+x@ 3.2
which is equivalent to (3.1).
Writing ¥, = rv,, taking account of relations (1.4) and (2.3) and also of the fact that ¥ is
a real function, and making use of Expression (3.2), we obtain
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where @,({) and ®,({)= - D,({) + 24, 'x‘i%)/dz are arbitrary r! -analytic functions of
=r + iz. We introduce the notation
ov; 9o\ Ov. Wy
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Taking account of Eq. (1.1) and Eq. (1.3) differentiated with respect to r, and then of Eq.
(1.2) and Eq. (1.3) differentiated with respect to z, we have
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Hence, 2’}49 4 ip is an 7~ -analytic function of {=r + is. Making use of the continuity
r

Eq. (1/r) 3V, /dr+dv, /3 x = 0, we obtain
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Hence, ,
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By virtue of relations (2.4), we can also write Formulas (3.3) and (3.4) as
Dy (2) 90 (D)
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Formula (3.5), which is the general solution of system {1.1) to (1.3), can also be trans-
formed by replacing the complex variable {=r + iz by the complex variable z = x + iy and
the functions — i®, ({) and — i ® ,({) by the functions O, (2) and D, (2), respectively.

But if the function f({) is p-analytic, then the function if({) is dso p~! analytic. This
implies that Formulas (3.5) can be rewritten in the form
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Here @, (2) and @, (2) are arbitrary x-analytic fanctions of z = x + iy.

Formulas (3.6) are analogous to the basic formulas developed in [2 and 3] for the case
of plane flows of viscous fluids. They constitute both the general solution of system (1.1)
to {1.3) and the basic formulas for the application of p-analytic functions in viscous fluid
hydrodynamics. Relations analogous to the first Formulas of (3.5) and.(3.6) were obtained
by Polozhii in elasticity theory [ 4]

4. Formulas (3.5) enable us to derive still other forms of the general solution of system
(1.1) to (1.3). To this end we set
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where A{r, 1) is a real fonction, and introduce the r=l-analytic function
D1 (§) =M+ iN =2["0:1({)d,'Z
Here Z is the conjugate variable corresponding to the characteristicp=r-landw=a+
+if =~z +ir. By (2.4) we have
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so that the first Formula of (3.5) can algo be written as (4.3)
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On the other hand, writing® ({) =P +iQ, ®,({) = R + iS, we find from (4.1) that
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Hence, A; A= — 43Q/3 2= 29 2N/9 22.Taking account of this relation and also of con-
tinuity Eq. (1.3) written in the form A 12(1\«}- N} — 282N/322= 0, we find from Formula (4.3)
that A N = 0. Since A ;A= 2d2N/3z% and AN = 0, we have A ;A A= 0.

Finally, from the second relation of (3.5) we find that p = — 419 0/9z = A A. Hence,
the general solation of system (1.1) to (1.3) can be written as [5

a
Vp= ‘aa—r' (A + N}, Yy = E (A R N), P = }J»A}A, AiN = 0, A{A:A =0 (4.4)
which is analogous to Love’s first form in the theory of elasticity (6], p. 275).

5 Letusset A+ N=32/3z and 20N/Jz = AXE‘ in (4.4); since A,N = 0, we have

A§A15= 0. It follows that the general solution of system (1.1) to {1.3) can be written as
[s
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which is analogous to Love’s second form in the theory of elasticity ([s], p. 276).

6. Letus set A ~N=tr+ nand AN /dr=—¥/r in (4.4); since A|N = 0 and A; A = 202
N/J22, we have A; = 0 and A, = 0. The general solution of system (1.1) to (1.3) can
therefore be written as [5]

.0 0 - —06.1)
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which is analogous to Timpe's formula in the theory of elasticity .

7. Let us set A= (1/r)32%w/drd z in (4.4) and consider a function T (7, z) such that the
function T + 2N of the complex variable {=r + iz is an r~!-analytic function. Since A N =
= 0, it follows that A, T = 0, and since A ;A= 282N/ 322 and A,[(1/1) e/ drl = (1/1)3A ,
@)/0r, the mixed derivative 82(A2m w TY/3rdz = 0, Hence we have AQm =T+ A{r) + B(2),
where A(r) and B(z) are arbitrary functions. If we take A(r) = 0, B(z) = 0, we obtain the
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general solution of system (1.1) to {1.3) in the form [s]

1 o7 1 0% 1T, 1 3%
Vr =3 oz T F @zt YT T 0r Br et T r oz .1
B

p= T m AE(I), AT = 0, AsAs0 =0
which is analogous to G.D. Grodskii's form in the theory of elasticity (e.g. see [8], Sec-

tion 51).
Formulas (7.1) can also be written as

1 o (1 (% 1t a1, 32—‘”)
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