ON THE GENERAL SOLUTION OF EQUATIONS OF AXISYMMETRICAL MOTIONS OF VISCOUS FLUIDS

PMM Vol. 31, No. 3, 1967, pp. 586-589

DAN G. IONESCU
(Bucharest, Rumania)

(Received December 4, 1966)
Some forms of the general solution of the equations of axisymmetrical steady-state slow motions of viscous fluids are considered. The general solution is constructed in a form which at the same time consitutes the system of basic formulas of the integration method based on the properties of p-analytic functions [1].

1. Let us consider the Stokes equations and the equation of continuity in cylindrical coordinates and in the case of axisymmetrical steady-state motions,

$$
\begin{align*}
& \frac{\partial p}{\partial r}-\mu \Delta_{1} v_{r}+\mu \frac{v_{r}}{r^{2}}=0 \tag{1.1}\\
& \frac{\partial p}{\partial z}-\mu \Delta_{1} v_{z}=0 \quad \quad\left(\Delta_{1}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}}+\frac{1}{r} \frac{\partial}{\partial r}\right) \tag{1.2}\\
& \frac{\partial v_{r}}{\partial r}+\frac{\partial v_{z}}{\partial z}+\frac{v_{r}}{r}=0 \tag{1.3}
\end{align*}
$$

Eq. (1.3) indicates that there exists a stream function $\Psi(r, z)$ such that

$$
\begin{equation*}
v_{r}=\frac{1}{r} \frac{\partial \Psi}{\partial z}, \quad v_{z}=-\frac{1}{r} \frac{\partial \Psi}{\partial r} \tag{1.4}
\end{equation*}
$$

Substitating these Expressions into (1.1) and (1.2), we find that Ψ satisfies Eq.

$$
\begin{equation*}
\Delta_{2} \Delta_{2} \Psi=0 \quad\left(\Lambda_{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{\partial^{2}}{\partial z^{2}}-\frac{1}{r} \frac{\partial}{\partial r}\right) \tag{1.5}
\end{equation*}
$$

2. In order to integrate Eq. (1.5) we make use of p-analytic.functione. Let us recall their definitions and some of their properties which we shall have occasion to use below (e.g. see[1], Chapter 1, Sections 2 and 3). The fanction $f(\zeta)=\mu(x, y)+i v(x, y)$ of the complex variable $\zeta=x+i y$ is called p-analytic with the characteristic $p=p(x, y)$ in the domain D if it is single-valued in this domain and if its real and imaginary parts have continuous partial derivatives and satisfy the system of Eqs.

$$
\begin{equation*}
\frac{\partial u}{\partial x}=\frac{1}{p} \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y}=-\frac{1}{p} \frac{\partial v}{\partial x} \tag{2.1}
\end{equation*}
$$

If $p=p(\beta)$, where β is a harmonic function of x and y and if $\omega=\alpha+i \beta$ is an analytic function of $\zeta=x+i y$, then by the operator derivative of the function $f(\zeta)$ with respect to the conjugate variable Z we mean the Expression

$$
\begin{equation*}
\frac{d_{p}^{\prime} f(\zeta)}{d Z}=\frac{1}{2}\left(\frac{\partial u}{\partial \alpha}+\frac{1}{p} \frac{\partial v}{\partial \beta}\right)+\frac{i}{2}\left(\frac{\partial v}{\partial \alpha}-p \frac{\partial u}{\partial \beta}\right) \quad\left(Z=X+i Y=\alpha+i \int \frac{\partial \beta}{p}\right) \tag{2.2}
\end{equation*}
$$

and by the operator derivative of the function $f(\zeta)$ with respect to the anticonjugate variable $\bar{Z}=X-i Y$ the Expression

$$
\begin{equation*}
\frac{d_{p}^{\prime} f(\zeta)}{d \bar{Z}}=\frac{1}{2}\left(\frac{\partial u}{\partial \alpha}-\frac{1}{p} \frac{\partial v}{\partial \beta}\right)+\frac{i}{2}\left(\frac{\partial v}{\partial \alpha}+p \frac{\partial u}{\partial \beta}\right) \tag{2.3}
\end{equation*}
$$

If $f(\zeta)$ is a p-analytic function, then

$$
\begin{equation*}
\frac{d_{p}^{\prime} f(\zeta)}{d Z}=\frac{\partial u}{\partial \alpha}+i \frac{\partial v}{\partial \alpha}=\frac{1}{p} \frac{\partial v}{\partial \beta}-i p \frac{\partial u}{\partial \beta}, \frac{d_{p}^{\prime} f(\zeta)}{d \bar{Z}}=0 \tag{2.4}
\end{equation*}
$$

The dingleevalued function of a complex variable $f(\zeta)$ is called operator-integrable over the conjugate variable Z in the domaln D if there exists a function of a complex variable $f^{\prime}(\zeta)$ which is continuous in the domain D and auch that $d_{p}{ }^{\circ}{ }^{*}(\zeta) / d Z$ exiats and Eq. $d_{p}{ }^{\prime \prime}$ $f^{*}(\zeta) / d Z=f(\zeta)$ is valid in the domain D.

The indefinite operator integral over the conjugate variable Z of the function $f(\zeta)$ is written as $\int{ }^{\circ} f(\zeta) d_{p}{ }^{\prime} Z$.

In order for the operator integral over the conjugate variable Z of the arbitrary panalytic function $f(\zeta)$ to be a p-analytic function it is necessary and anfficient that $p=p(\beta)$, where β is a harmonic fanction of x and y. Now let us attempt to find the general solution of the fourth-order Eqs.

$$
\begin{array}{ll}
\Delta_{1}^{*} \Delta_{1}^{*} u=0 & \left(\Delta_{1}^{*}=\frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial^{2}}{\partial \beta^{2}}+\frac{1}{p} \frac{\partial p}{\partial \beta} \frac{\partial}{\partial \beta}\right) \\
\Delta_{2}^{*} \Delta_{2}^{*} v=0 & \left(\Delta_{2}^{*}=\frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial^{2}}{\partial \beta^{2}}-\frac{1}{p} \frac{\partial p}{\partial \beta} \frac{\partial}{\partial \beta}\right) \tag{2.6}
\end{array}
$$

If $f=u+i v$, then Eqs. (2.5) and (2.6) can be writton as

$$
\frac{d_{p}^{4} f(\zeta)}{d Z^{2} d \bar{Z}^{2}}=0
$$

From this, making ase of the indefinite operator integral over the conjugate varisble Z, we obtain the general solutione of these Eqs. in the form

$$
\begin{align*}
& u=2 \alpha\left[\Phi_{1}(\zeta)+\Phi_{1}(\zeta)\right]+\chi(\zeta)+\bar{\chi}(\zeta) \tag{2.7}\\
& v=2 \alpha\left[\Phi_{1}(\zeta)-\Phi_{1}(\zeta)\right]+\chi(\zeta)-\bar{x}(\zeta) \tag{2.8}
\end{align*}
$$

where $\Phi_{1}(\zeta)$ and $\chi(\zeta)$ are arbitrary p_{ζ}-analytic functions and $\Phi_{1}(\zeta)$ and $\bar{\chi}(\zeta)$ are the complex conjugates of the functions $\Phi_{1}(\zeta)$ and $\chi(\zeta)$, respectively.
8. Setting $\zeta=x+i y=r+i x, p=r^{1}, \omega=\alpha+i \beta=-z+i$, we reduce Eq. (2.5) to (1.5); hence, the goneral solution of Eq. (1.5) is of the form

$$
\begin{equation*}
\Psi=-2 z\left[\Phi_{1}(\zeta)+\Phi_{1}(\zeta)\right]+\chi(\zeta)+\chi(\zeta) \tag{3.1}
\end{equation*}
$$

where $\Phi_{1}(\zeta)$ and $\chi(\zeta)$ are arbitrary r^{-1}-analytic functions and $\Phi_{1}(\zeta)$ and $\bar{\chi}(\zeta)$ are the corresponding conjugate functions. However, in order to simplify the formalas to follow, we use the following expression for Ψ :

$$
\begin{equation*}
\Psi=z\left[\Phi_{1}(\zeta)+\bar{\Phi}_{1}(\zeta)\right]+\chi(\zeta)+\bar{\chi}(\zeta) \tag{3.2}
\end{equation*}
$$

which is equivalent to (3.1).
Writing $V_{r}=r v_{r}$, taking account of relations (1.4) and (2.3) and also of the fact that Ψ is a real function, and making use of Expression (3.2), we obtain

$$
\begin{equation*}
V_{r}+i v_{z}=\frac{\partial \Psi}{\partial \dot{z}}-i \frac{1}{r} \frac{\partial \Psi}{\partial r}=-2 \frac{\dot{d}_{p} \Psi}{d \bar{\zeta}^{\prime}}=\Phi_{1}(\zeta)-2 z \frac{\overline{d_{p}{ }^{\prime}\left(D_{1}(\zeta)\right.}}{d Z}-\bar{\Phi}_{2}(\zeta) \tag{3.3}
\end{equation*}
$$

where $\Phi_{1}(\zeta)$ and $\Phi_{2}(\zeta)=-\Phi_{1}(\zeta)+2 d_{p}{ }^{\prime} \chi^{d}(\zeta) / d Z$ are arbitrary r^{-1}-analytic functions of $\zeta=r+i x$. We introduce the notation

$$
2 \Omega=r\left(\frac{\partial v_{z}}{\partial r}-\frac{\partial v_{r}}{\partial z}\right)=r \frac{\partial v_{z}}{\partial r}-\frac{\partial V_{r}}{\partial z}
$$

Taking account of Eq. (1.1) and Eq. (1.3) differentiated with respect, to r, and then of Eq. (1.2) and Eq. (1.3) differentiated with respect to π, we have

$$
\frac{\partial(2 \mu \Omega)}{\partial r}=r \frac{\partial p}{\partial z}, \quad \frac{\partial(2 \mu \Omega)}{\partial z}=-r \frac{\partial p}{\partial r}
$$

Hence, $2 \mu \Omega+i p$ is an r^{-1}-analytic function of $\zeta=r+i x$. Making use of the continuity Eq. $(1 / r) \partial V_{z} / \partial r+\partial \nu_{s} / \partial s=0$, we obtain

$$
2 \Omega=\left(r \frac{\partial v_{z}}{\partial r}-\frac{\partial V_{r}}{\partial z}\right)-i\left(\frac{1}{r} \frac{\partial V_{r}}{\partial r}+\frac{\partial v_{z}}{\partial z}\right)=2 \frac{d_{p}^{\prime}\left(V_{r}+i v_{z}\right)}{d Z}=4 R\left\{\frac{d_{p}^{\prime} \Phi_{1}(\zeta)}{d Z}\right\}
$$

Hence,

$$
\begin{equation*}
2 \mu \Omega+i p=4 \mu \frac{d_{p}{ }^{\prime} \Phi_{1}(\zeta)}{d Z} \tag{3.4}
\end{equation*}
$$

By virtue of relations (2.4), we can also write Formalas (3.3) and (3.4) as

$$
\begin{equation*}
V_{r}+i v_{z}=\Phi_{1}(\zeta)+2 z \frac{\partial \bar{\Phi}_{1}(\zeta)}{\partial z}-\bar{\Phi}_{2}(\zeta), \quad 2 \mu \Omega+i p=-4 \mu \frac{\partial \Phi_{1}(\zeta)}{\partial z} \tag{3.5}
\end{equation*}
$$

Formula (3.5), which is the general solution of system (1.1) to (1.3), can also be transformed by replacing the complex variable $\zeta=r+i z$ by the complex variable $z=x+i y$ and the functions $-i \Phi_{1}(\zeta)$ and $-i \Phi_{2}(\zeta)$ by the functions $\Phi_{1}(z)$ and $\Phi_{2}(z)$, respectively.

But if the function $f(\zeta)$ is p-analytic, then the function if (ζ) is also p^{-1} analytic. This implies that Formulas (3.5) can be rewritten in the form

$$
\begin{equation*}
v_{y}-i V_{x}=\Phi_{1}(z)-2 y \frac{\partial \overline{\mathrm{D}}_{1}(z)}{d y} \quad \overline{\mathrm{D}}_{2}(z), \quad p-2 i \mu \Omega=-4 \mu \frac{\partial \Phi_{1}(z)}{\partial y} \quad\left(V_{x}=x v_{x}\right)(\tag{3.6}
\end{equation*}
$$

Here $\Phi_{1}(z)$ and $\Phi_{2}(z)$ are arbitrary x-analytic functions of $z=x+i y$.
Formulas (3.6) are analogous to the basic formulas developed in [2 and 3] for the case of plane flows of viscous fluids. They constitute both the general solution of system (1.1) to (1.3) and the basic formulas for the application of p-analytic functions in viscous fluid hydrodynamics. Relations analogous to the first Formulas of (3.5) and.(3.6) were obtained by Polozhii in elasticity theory [4].
4. Formulas (3.5) enable us to derive still other forms of the general solution of system (1.1) to (1.3). To this end we set

$$
\begin{equation*}
\Phi_{1}(\zeta)-2 z \frac{\partial \overline{\mathrm{D}}_{1}(\zeta)}{\partial z}+\bar{\Phi}_{2}(\zeta)=-r \frac{\partial \Lambda}{\partial r}-i \frac{\partial \Lambda}{\partial z} \tag{4.1}
\end{equation*}
$$

where $\Lambda(r, z)$ is a real function, and introduce the r^{-1}-analytic function

$$
\Phi_{1}^{*}(\zeta)=M+i N=2 \int^{\prime} \Phi_{1}(\zeta)^{\prime} d_{p}^{\prime} Z
$$

Here Z is the conjugate variable corresponding to the characteristic $p=r^{-1}$ and $\omega=a+$ $+i \beta=-z+i$. By (2.4) we have

$$
\begin{equation*}
2 \Phi_{1}(\zeta)=\frac{d_{p}^{\prime} \Phi_{1}^{*}(\zeta)}{d Z}=-\frac{\partial M}{\partial z}-i \frac{\partial N}{\partial z}=r \frac{\partial N}{\partial r}-i \frac{1}{r} \frac{\partial M}{\partial r} \tag{4.2}
\end{equation*}
$$

so that the first Formula of $(3,5)$ can algo be written as
$V_{r}+i v_{z}=2 \Phi_{1}(\zeta)-\left[\Phi_{1}(\zeta)-2 z \frac{\partial \bar{\Phi}_{1}(\zeta)}{\partial z}+\bar{\Phi}_{2}(\zeta)\right]=r \frac{\partial}{\partial r}(\Lambda+N)+i \frac{\partial}{\partial z}(\Lambda-N)$
On the other hand, writing $\Phi_{1}(\zeta)=P+i Q, \Phi_{2}(\zeta)=R+i S$, we find from (4.1) that

$$
r \frac{\partial \Lambda}{\partial r}=-P+2 z \frac{\partial P}{\partial z}-R, \quad \frac{\partial \Lambda}{\partial z}=-Q-2 z \frac{\partial Q}{\partial z}+S
$$

Hence, $\Delta_{1} \Lambda=-4 \partial Q / \partial z=2 \partial^{2} N / \partial z^{2}$. Taking account of this relation and also of continuity Eq. (1.3) written in the form $\Delta_{1}(\Lambda+N)-2 \partial^{2} N / \partial_{z}^{2}=0$, we find from Formula (4.3) that $\Delta_{1} N=0$. Since $\Delta_{1} \Lambda=2 \partial^{2} N / \partial_{z}^{2}$ and $\Delta_{1} N=0$, we have $\Delta_{1} \Delta_{1} \Lambda=0$.

Finally, from the second relation of (3.5) we find that $p=-4 \mu \partial Q / \partial z=\mu \Delta_{1} \Lambda$. Hence, the general solation of system (1.1) to (1.3) can be written as $[5]$

$$
\begin{equation*}
v_{r}=\frac{\partial}{\partial r}(\Lambda+N), \quad v_{z}=\frac{\partial}{\partial z}(\Lambda-N), \quad p=\mu \Delta_{1} \Lambda, \quad \Delta_{1} N=0, \quad \Delta_{1} \Delta_{1} \Lambda=0 \tag{4.4}
\end{equation*}
$$

which is analogons to Love's first form in the theory of elasticity ([6], p. 275).
5. Let ns set $\Lambda+N=\partial E / \partial z$ and $2 \partial N / \partial z=\Delta_{1} \Xi$ in (4.4); since $\Delta_{1} N=0$, we have $\Delta_{1} \Delta_{1} \underset{1}{ }=0$. It follows that the general solution of system (1.1) to (1.3) can be written as

$$
\begin{equation*}
v_{r}=\frac{\partial^{2} \Xi}{\partial r_{1} \partial z}, \quad v_{z}=-\Delta_{1} \Xi+\frac{\partial^{2} \Xi}{\partial z^{2}}, \quad p=\mu \frac{\partial}{\partial z} \Delta_{1} \Xi, \quad \Delta_{1} \Delta_{1} \Xi=0 \tag{5.1}
\end{equation*}
$$

which is analogous to Love's second form in the theory of elasticity ([6], p. 276).
6. Let us set $\Lambda-N=\psi+\eta$ and $\partial N / \partial r=-\psi / r$ in (4.4); since $\Delta_{1} N=0$ and $\Delta_{1} \Lambda=2 \partial^{2}$ $N / \partial z^{2}$, we have $\Delta_{1} \eta=0$ and $\Delta_{2} \varphi=0$. The general solution of system (1.1) to (1.3) can therefore be written as [5]

$$
v_{r}=-2 \frac{\psi}{r}+\frac{\partial}{\partial r}(\psi+\eta), \quad v_{z}=\frac{\partial}{\partial z}(\psi+\eta), \quad r==\mu \Delta_{1} \psi, \quad \Delta_{1} \eta=0, \Delta_{2} \psi=0(6.1)
$$

which is analogous to Timpe's formula in the theory of elasticity [7].
7. Let us set $\Lambda=(1 / r) \partial^{2} \omega / \partial r \partial z$ in (4.4) and consider a function $T(r, z)$ such that the function $T+2 i N$ of the complex variable $\zeta=r+i z$ is an r^{-1}-analytic function. Since $\Delta_{1} N=$ $=0$, it follows that $\Delta_{2} T=0$, and since $\Delta_{1} \Lambda=2 \partial^{2} N / \partial z^{2}$ and $\Delta_{1}[(1 / r) \partial \omega / \partial]=(1 / r) \partial\left(\Delta_{2}\right.$ $\omega) / \partial r$, the mixed derivative $\partial^{2}\left(\Delta_{2} \omega-T\right) / \partial r \partial z=0$. Hence we have $\Delta_{2} \omega=T+A(r)+B(z)$, where $A(r)$ and $B(x)$ are arbitrary functions. If we take $A(r)=0, B(x)=0$, we obtain the
general solution of system (1.1) to (1.3) in the form [5]

$$
\begin{align*}
& v_{r}=\frac{1}{2 r} \frac{\partial T}{\partial z}-\frac{1}{r} \frac{\partial^{8} \omega}{\partial z^{3}}, \quad v_{z}=-\frac{1}{2 r} \frac{\partial T}{\partial r}:+\frac{1}{r} \frac{\partial^{3} \omega}{\partial r \partial z^{2}} \tag{7.1}\\
& p=\frac{\mu}{r} \frac{\partial^{2}}{\partial r \partial z} \Delta_{2} \omega, \quad \Delta_{2} T=0, \quad \Delta_{2} \Delta_{2} \omega=0
\end{align*}
$$

which is analogous to G.D. Grodskii's form in the theory of elasticity (e.g. see [8], Section 51).

Formulas (7.1) can also be written as

$$
\begin{gather*}
v_{r}=\frac{1}{r} \frac{\partial}{\partial z}\left(\frac{1}{2} \Delta_{2} \omega-\frac{\partial^{2} \omega}{\partial z^{2}}\right), \quad v_{z}=-\frac{1}{r} \frac{\partial}{\partial r}\left(\frac{1}{2} \Delta_{2} \omega-\frac{\partial^{2} \omega}{\partial z^{2}}\right) \tag{7.2}\\
p=\frac{\mu}{r} \frac{\partial^{2}}{\partial r \partial z} \Delta_{z} \omega, \quad \Delta_{2} \Delta_{2} \omega=0
\end{gather*}
$$

BIBLIOGRAPHY

1. Polozhii, G.N., Generalization of the Theory of Analytic Functions of a Complex Variable, Kiev University Press, 1965.
2. Ionescu, Dan Gh., La méthode des fonctions analytiques dans l'hydrodynamique des liquides visqueux, Rev. Méácanique Appliquée Vol. 8, No. 4, 1963.
3. Ionescu, Dan Gh., La théorie des fonctions analytiques et l'hydrodynamique des liquides visqueax, Applications of the theory of fanctions to solid state mechanicu. Proceedings of the International Symposium, Thilisi, 17-23 September 1963, Vol. 2, Izd "Nauka", 1965.
4. Polozhii, G.M., The method of p-analytic functions in axisymmetrical elasticity theory. Kiev University Preas, 1957.
5. Ionescu, Dan Gh., Integrale generale ale mişcărilor axial-simetrice Tnhidrodinamica fluidelor fiscoase, Rev, Univ. C.I. Parhon gi Politehn. Buceresti, Ser. gitiint. natur. No. 4-5, 1954.
6. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge University Press, 1934.
7. Timpe, A. Achsensymmetrische Deformation von Umdrehungakorpern, Z. angew. Math. Mech. Vol. 4, No. 5, 1924.
8. Krutkov, Iu.A., The Stress Fanction Tensor and General Solutions in the Statics of the Theory of Elasticity, Izd. Akad. Nauk SSSR, Moscow-Leningrad, 1949.
