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Some forms of the general solution of the equations of axisymmetrical steady-state slow 
motions of viscous fluids sre considered. The general solution is constructed In a form 
which at the same time consitutes the system of basic formulas of the integration method 
based on the properties of p-analytic functions [ 11. 

1. Let as consider the Stokes equations and the equation of continuity in cylindrical co- 
ordinates and in the case of axisymmetrical steady-state motions, 
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Eq. (1.3) indioates that there exists a stream function y(r, I) such that 
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Snbstitotina these Expressions into (1.11 and (1.21. we find that v! satisfies Es. 
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2. In order to integrate Eq. (1.5) we make use of p-analytic.functions, Let as recall their 
definitions and some of their properties which we shall have occasion to use below (e.g. 
seeb], Chapter 1, Sections 2 and 31. The function r(4) = ~(x, yl + iv (r, yl of the complex 
variable [P x + iy is called p-analytic with the chuacteristic p = p (x, y) in the domain D 
if it is single-valued in this domain and if its real and imaginary parts have continuous par- 
tial derivatives aud satisfy the system of Eqe. 
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Ifp=p(@), wherepi s a harmonic function of x and y and if w = a + ifl is an analytic 
function of 5-x + iy, then by the operator derivative of the function f(r) with respect to 
the conjugate variable Z we mean the Expresdon (2.21 

d,‘!(6) 1 
-=-i-(~+$~)++(+p~) (Z=X+iY=x+$$) 

dZ 

and b the operator derivative of the function f(c) with respect to the anticonjugate varia- 
ble Z = X - iY the Expression 
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If f(C) is a p-analytic function, then 
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(2.4) 

‘Ike mingle-valued function of a oomplex vufable ff<, im called operatorintegr&le over 
the conjugate vufable Z in the domafn D if there axfsts a funcdon of a complex variable 
f(<) whfch im condnuous in the domafn D and much that d,, 7’(()/dZ edmu and Eq. dp’ 
,f* ( ()/dZ = f( (1 i l valid in the domafn D. 

The indefinite operator integral over the conjugate vnrfible Z of the function f(4) is 
written u f’f((> dP ‘Z. 

In order for the operator integral over the conjugate vuiable Z of the ubitruy -analydc 
function f(C) to be a p-andytic function it is neceasuy and mfficient that p = p fi>, where Q 
fi in a harmonic function of x aud y. Now let us attempt to find the general solution of the 
fourth-order Eqs. 

l 
A;A1 u=O --- 

A;A2*v =0 

ff f- IA + iv, then Eqa (2.5) aud (2.6) can be written as 
dP”fG) = o 
dP dB 
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From this, mahfng um of the inde5nfte operator integral over the conjugate vuiable Z, 
we obtafn the general solutions of these Eqelin the form 

u = k ‘I% (6) + ‘1(5)j + x (5) + g (5) (2.7) 
v = k PI (f) - (0, (01 + x (5) - (6) (2.8) 

where @ t(c) snd ~(5) are arbitrary p-malydc functiona snd f t ( 5) snd 5 (4) are the com- 
plex conjugates of the functions @ t( 6) snd X( 0, respectively. 

8. Setting{-x+iy-r+iz, p=r1,c0=a+i/3 = - I + ir, we reduce Eq. (2.5) to (1.5); 
hence, the gunersl solution of Eq. (1.5) is of$e form 

WC- 22 1% (f) + @lK)l + x (0 + x (5) (3.1) 

where at (6) and ~(6) are ubitrary r’kalytic functions and @ (5) and c(& are the 
corresponding conjugate functions. However, in order to simplify th 
use the following expression for \p: 

e formulas to follow, we 

W = z PI (5) + 3, (01 + x (5) + x (5) (3.2) 

which is equivalent to (3.1). 
Writing V, = rv,, taking account of relations (1.4) and (2.3) and also of the fact that \y is 

a real function, and mshing use of Expressiou (3.21, we obtain 
dp’@l (5) 

dZ - G(f) (3.3) 

)/dZ are arbitrary r”-analytic functions of 

TUUII 
(1.2) snd%q. (1.3) diff 

account of Eq. (1.1) and Eq. (1.3) differentiated with respect,to r, and then of Eq. 
erendated with respect to z, we have 

aCM-8 aP a m9) 8P 
-=rr, i3r az =-‘-SF 

Hence, 2 
Eq. (l/r) d { /dr + du, /dr = 0, we obtain 

Q + ip i8 an r’ -mAytic function of <= r + it. Mshing 0.e of the continuity 

Hence. -- 
2pL52 + ip = 4p 

dP'@l (5) 

By virtue of relation0 (2.41, we csn also write F1%11as (3.3) and (3.4) as 

(3.4) 
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Formula (3.5), which is the general solution of system (1.1) to (1.3), can also be trans- 
formed by replacing the complex variable [= r + iz by the complex variable z = .z + iy and 
the functions - i@t (<) and - i@ 2(c) by the functions @t(z) and @ (z), respectiveiy. 

But if the function j(Z) is p -analytic, then the function if (4) is Aso pa* analytic. This 
implies that Formulas (3.5) csn be rewritten in the form 

a(& (2) 
vu - iv, = (D, (z) - 2y T- p&(z), p - 2iI”s-J = - 

8% (2) 

+ay 
(V, = cwx) (3.6) 

Here @t (t) and @, (z) are arbitrary r-analytic functions of z = x + iy. 
Formulas (3.6) are analogous to the basic formulas developed in [Z and 31 for the case 

of lane flows of viscous fluids. They constitute both the general solution of system (1.1) 
to P 1.3) and the basic formulas for the application of p-analytic functions in viscous fluid 
hydrodynamics. Relations anal0 ous to the first Formulas of (3.5) and.(3.6) were obtained 
by Polozhii in elasticity theory f 41. 

4. Formulas (3.5) enable us to derive still other forus of the general solution of system 
(1.1) to (1.3). To this end we set 

aGr(5) 
@1(C)-227 +&a(E)=-*+ 

an 
--ix (4.11 

where h(r, rf is a real function, and introdnce the r”-analytic function 

a~: (6) = iii + iN = 2 j ‘@I (<)&‘Z 

Here Z is the conjugate variable corresponding to the characteristic p = t’l and w = a + 
+ijS=-r+ir.By(2.4)wehave 

dp’W(<) &+f dN @N 
2%(C) = dZ 

1 ail?? 
=--~-i~=rar---i-ar (4.2) 

so that tha fimt Formnla of (3.5) can alao be written as 
(4.3) 

v,+is,=Z~~(i)-[~~(6)-2~-amaz(6) +m,~~)]=r~(n-+N)+i~(A-N) 

On the other hand, writing # 1( 5) = P + iQ, ap, (5) = R + is, we find from (4.11 that 

0A aP 
--Pf22~-R, 

aa aQ P-T” -=--Q--2zx+S 
aa 

Bsnce, A,A== - 4aQ/dz = 2d 2N/dt2.Taking account of this relation and also of con- 
tinuity Eq. (1.3) written in the form A (A+ N) - Z~?~Nlr?x*= 0, we find from Formula (4.3) 
thatAIN=O. SinceAlA= 2a2N/az t sndAIN=O, wehaveAtAth=O. 

Finally, from the second relation of (3.5) we find that p = - 
the general solotion of system (1.1) to (1.3) can be written as 15 “I” 

~9Q/at=~AtA. Hence, 

nr=&A+Nf. ur =-&A---N), p=pAlA, ArN = 0, &Arh = 0 (4.4) 

which is analogous to Love’s first form in the theory of elasticity (161, p. 275). 

5. Let ns set A + N = r3 a/r?. and rtdN/v/dr = A, ?, in (4.4); since AIN = 0, we have 
A A,Z= 0. It follows that the general solution of system (1.1) to (1.3) can be written as 

I5f 
8% 3% 

v =vv r vz 2 - A,8 + ~3 p-_IL -$A& AlArE = 0 (5.1) 

which is anaIogous to Love’s second form in the theory of elasticity (161, p. 276). 

6. Let us set A -N = I+&+ rl and JN/ar= -$/t in (4.4); since All = 0 and A,A= 2~3~ 
N/dx2, we have A, ? = 0 and A,rp = 0, The general solution of system (1.1) to (1.3) can 

therefore be written as [s] 

vr == - 2* t Lcq+,,,. vf=: ~(~‘-rl~, ~--PA& 7-t ar 
&q z 0, A@ zz (~(6.1) 

which is analogous to Timpe’s formula in the theory of elasticity 171. 

7. Let us set A= (l/r)d2w/~?rdz in (4.4) and consider a function T(r, a) such that the 

function T + 2iN of the complex variable <= r + iz is an r-‘-analytic function. Since A ,N = 
= 0, it follows that A, T = 0, and since A ,A = 2@N/da 2 and AJ(l/r)do/&I = (l/r)&A 2 
co)/&, the mixed derivative dz(A,o - T)/c?raz = 0. Hence we have A,w = T + A(r) + Bfz), 
where A(r) and B(r) are arbitrary functions. If we take A(r) = 0, B(z) = 0, we obtain the 
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general solution of system (1.11 to (1.31 in the form CSI 
,i 3T 1 a%3 faT 1 aso ---- 

VP = 5 dz r a23 * “p=-~++-- P ar 6%~ 
(7.11 

IL 
P= 7 &Am, AaT = 0, Aahao = 0 

which is analogous to G.D. Crodskii’s form in the theory of elasticity (e.g. see [8], Sec- 
tion 511. 

Formulas (7.11 can also be written as 
1 a 4 a 

- 1-Aro-m) 
! 

are 
V’==FK vz=-y 

ar 2 (7.21 

IL aa p=-- 
r araa Aat)f hahim = 0 

BIBLIOGRAPHY 

1. Poloshii, G.N., GeneraIiaadon of the Theory of Analytic Fanctione of a Complex Vari- 
able, Kiev University Preaa,, 1965. 

2. Ionescu. Dan Gh., La m&ode des fonctionrr anal 
liqaidcs visqaear, Rev. Mbqcaniqae AppIiqa~e e 

tiques dans l’h drodynamiqne des 
01.8, No. 4, I d;i 3. 

3. Ionesca, Dan Gh., La theorie des fonctions analytiqaes et l’hydrodyn~iqae des li - 
aides visqaear, Applications of the theory of fnnctions to solid state mechanics. B 10- 
ceedings of the International Symposiam, Tbilisi, 17-23 September 1963. Vol. 2, Izd 
“Nat&a”, 1965. 

4. Polosbii, GM., The method of p-analytic functions in axiaymmetrical elasticity theory. 
Kiev University Press, 1957. 

5. Ionescn, Dan Gh., Integrals generale ale miqctilor axial-simetrice ?hhidrodinamica 
Baidelor &coase, Rev, Univ. C.I. Parhoa qi Politehn. Buocresti, Ser. qtiint. natur. 
No. 4-5, 1954. 

6. Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, 4th ed., Cambridge 
University Press, 1934. 

7. Timpe, A., ~Achsensymmetriache Deformation von Umdrehungsklrpern, 2. angew. Math. 
Me& Vol. 4, No. 5, 1924, 

8. Kmtkov, I&., The Stress Fnnction Tensor and General Solutions in the Statics of the 
Theory of Elasticity, Izd. Akad. Naak SSSR, Moscow-Leningrad, 1949. 

TransIatsd by A.Y. 


